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Abstract. A quantum king  spin chain with nearest-neighbour couplings arranged in a 
quasiperiodic sequence is considered. The Cantor set structure of the energy spectrum is 
analysed in terms of the thermodynamic description of multifractals. Evidence is given 
that the spectrum of scales develops a singular behaviour: this is associated with a first-order 
phase transition of a new type. It is argued that this effect involves, not only quantum 
spins, but the whole class of phonon-like propagation problems on quasiperiodic chains. 

Propagation along aperiodic chains generated by inflation rules is characterized by 
critical states (neither extended nor localized) and Cantor set energy spectra. 

The associated scaling properties can be explored within a renormalization group 
(RG) scheme, based on the underlying hierarchical order of the chains. 

In a wide variety of cases, including the Schrodinger problem with potentials 
assigned in the Fibonacci way, the RG exponents are model dependent. 

As pointed out in [l], while, for example, in tight binding models of electron 
propagation the exponents depend on the values of the potential, in phonon propaga- 
tion they further depend on the specific value of energy: this implies energy spectra 
with inhomogeneous scaling behaviour (see also [2], where the discrete Laplace 
operator is considered). In this letter we try to further specify the effects of this 
dependence on the Cantor structure of the spectra: we consider a quantum Ising spin 
chain with two-valued nearest-neighbour ( N N )  couplings ordered according to a 
Fibonacci sequence, and prove that its energy spectrum is a multifractal characterized 
by a first-order phase transition in the spectrum of singularities. 

As will be clarified in the following, quantum spin chains do indeed belong to the 
mentioned class of phonon-like problems, so that our results holds for the whole class. 

The interest of this model is twofold: on the one hand it mimics the behaviour of 
quasiperiodic superlattices generated by magnetic constituents, on the other hand it 
conjugates the critical properties of the spectrum with the occurrence of a phase 
transition. 

The model has been numerically studied in [3]; in [4] it was analytically shown 
that it undergoes a phase transition and the corresponding critical exponents were 
determined; furthermore, by means of a RG analysis, the scaling exponents of the 
spectrum were obtained. 

The Hamiltonian has the form: 
H = - h  1 uL3)-E J p ,  ( 1 )  un+* ( 1 )  

n n 
(1) 
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where the U!) ( i  = 1 , 2 , 3 )  are spin-$ operators, h is a magnetic field in the 3 direction, 
and the coupling constants J ,  assume two values Jo and J1 , ordered according to the 
Fibonacci sequence, generated by iterating the substitution rule Jo+ JoJl, J, + Jo. 

It is well known [5] that the eigenvalues A of the Hamiltonian operator H can be 
obtained from the equation: 

h & k J l k + l + h & k - - l J l k - l + ( h 2 + & Z k ) J l k  =A2$k (2) 

where si = Jj/2 and Jl is a classical field. 
The eigenvalue problem (2) is reminiscent of a discrete Laplacian problem [2] and 

can be associated [4] with the study of the following map [6], characteristic of the 
Fibonacci substitution rule: 

X,+l = 2xnx,-1 - Xn-2. (3) 

Performing the fixed-point analysis of (3) one defines scaling exponents as 
A Z Z ( A A ~ ) ~  where AZ denotes the fraction of states associated with a band having 
width AA2. One verifies (see e.g. [7]) that 

I=X,+1+X~+X~-1-2x,+1x,x,_1 2 - 1  

is conserved under the map. As a consequence, the mentioned exponents depend on 
I, which in the present case has the form [4]: 

Ji  
2 

I=[(?-:);] si=-. 2 

It has been established in various numerical studies of the map (3) that two cycles 
mainly contribute to the scaling, with different exponents & (see e.g. [ l ]  and [8]). 

A 2-cycle gives an exponent: 

1/2 1/2 P ( 2 ) = P ( 2 ) ( I ) = f [ 2 + Y 1 / 2 + ( Y + 4 Y  ) 1 
where y = 2 5 + 1 6 1  (p2(0)=u4, a = ( 1 + 6 ) / 2 ) .  

A 6-cycle gives an exponent: 

P(6 )  = & 6 ) ( I )  = [ 1 +4( 1 + 1)’”+2(  1 + 1)12 P ( 6 d O )  = u6. 

The scaling exponents of the A and of the A’ spectra coincide everywhere but at 
A = 0: there the exponent 

We directly verified from the scaling of the lowest-energy band that at the Ising 
critical point of the model, where A = O  is attained [4], this is indeed the case, while 
elsewhere this band consistently scales as AZ = (AA)’(z). 

We perform the global analysis in terms of the thermodynamic formalism for 
multifractals as introduced in [9]. Upon denoting with Ai,, the width of the ith band 
at the nth iteration of the map, one defines the ‘partition function’ Z ( T )  as the limit 
of the sequence Z,,(T):  

= f for the A2 spectrum implies Ahx = AA. 

Z , ( ~ ) = ~ i A ~ ~ ~ ( ( F f l + l ) q ~ ( T ) .  (4) 
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Here 2, refers to the nth periodic approximant of the spectrum, which in the 
present case has F,+, bands, F, being the Fibonacci numbers (F,+I = Fn + Fn-1, Fo= 
Fl = 1). 

The limit of the sequence q , ( T )  is the ‘free energy’ q ( T ) .  

If one assumes a local scaling exponent pi: 

Ai,“ (Fn+l)-’i 
the average scaling exponent p at the ‘inverse temperature’ T is given by: 

The entropic measure is given by the so-called scaling spectrum S ( p ) ,  related to 
the free energy in the following way: 

q(7 )  = S b ) +  TP. 

In an alternative approach [lo] one defines a function f(a) from the inverse T ( q )  of 
the free energy: 

4 q ) = - f ( a ) + q a  

whence a = l /p; the value of f at a is the dimension of the subset with scaling 
exponent a. 

Recalling our definition of A, we expect to recover such exponents, in connection 
with unmixed scaling, at the extrema of the support of f(a). One could actually go 
further, noticing that the map (3) admits a symbolic representation (see [ll]), so that 
each energy band A,,, is associated with a string of symbols identifying a path along 
a tree. 

By suitably generalizing the procedure applied to a binary tree for the two-scale 
Cantor set, e.g. in [lo], one is tempted to recover the local scaling pi at each band 
from the corresponding path along the tree. 

This program is far from being completed even for homogeneous scaling, i.e. when 
the quantity Z depends on the potential only, but a further obstacle here is that the 
exponents A are A dependent. 

We now discuss how this dependence influences the thermodynamic functions. 
One can verify that when A is in the spectrum, the following inequality holds: 

&)(A) < &(A). Both exponents are decreasing functions of A, so that we expect: 

&)(Amax) =Z a A ( 6 ) ( A m i n ) *  ( 5 )  

We always verified ( 5 )  to hold within numerical error. 
= $ and = 1. 

The two scales do not mix, so that the support of f(a) reduces to the two points a = f 
( f ( f )  = 0) and a = 1 ( f ( 1 )  = 1). Correspondingly, the function p ( ~ )  is equal to 1 at 
T 0 (continuous spectrum) and equal to 2 (Van Hove singularity) at T > 0. 

For every r = different from 1 the scales mix: e.g., in figure 1 we display p ( ~ )  
for r = 0.99. 

Multifractality is ‘fully developed’ in the case of figures 2( a ) ,  ( b ) ,  referring to f( a) 
and p ( ~ )  respectively at so = 0.5, r = 0.5. Recalling [4] that the Ising critical point of 
the model is at eo = = r-’’u2 ( h  = 1) we are in the weak coupling regime, correspond- 
ing to the paramagnetic phase. 

In the periodic case eo = implies Z = 0, and one merely gets 
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Figure 1. Average scaling exponent p ( 7 )  = q ' (7 )  at c0 = 1.3, r = 0.99; all figures are obtained 
from approximants up to the 14th order. 
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Figure 2. c , = O . S ,  r = 0 . 5 ;  ( a ) :  scaling functionf(a); ( b ) :  w ( r ) = q ' ( r ) .  

Let us now split the F,,,, bands of the nth approximant in two clusters (down and 
up), made of the first Fn-, low-energy bands and of the remaining F,, respectively, 
and separately compute the thermodynamic functions for the two clusters. Were it not 
for the A dependence, one should obviously obtain the same f ( a ) .  The actual result 
is exhibited in figure 3( a ) ,  where, in order to have better resolution, we consider E~ = 2.5 
and r = 0.5. One can verify that the supports of the two f ( a )  separately satisfy ( 6 ) ,  
with Amin and A,,, referring to the corresponding (up and down) cluster; at the same 
time, the free energies q ( T )  intersect at T = 0 (see figure 4). 

Note that the free energy of the total spectrum is given by the upper boundary of 
the two branches [ 9 ] ,  as one easily realizes upon writing (4) as: 

Zn = Zn,u(T) + Z n , D ( T )  ( 6 )  

and keeping the leading contribution for large n. 
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Figure 3. E~ = 2.5, r = 0.5; ( a )  the f ( a )  of the up (left) and down (right) clusters (see text); 
( b )  the f(a) of the total spectrum. 

1 

Figure 4. Same parameters as in figure 3; dotted curve: free energy q (  7 )  of the up cluster; 
full curve: q ( 7 )  of the down cluster. 

Hence q ( 7 )  at the intersection point has a cusp singularity, implying a first-order 
phase transition (the average scaling exponent p is discontinuous in 7 ) .  

We found this phenomenon for all values of the coupling constants both below 
and above the Ising critical point. One may ask whether upon partitioning the spectrum 
into smaller clusters new distinct phases could be isolated. 

For example, one can keep the down cluster (with Fn-l bands) and split the up 
cluster in two subclusters, a centre cluster with Fn-2 bands and an up cluster with F,,-l 
bands. Clearly, the two extrema1 clusters dominate at T + --CO and at T + +CO respectively, 
but the centre cluster could dominate for finite T. This possibility can be excluded 
noticing the following: ( a )  for each cluster (D, C ,  U) the functions q ( T )  are concave; 
( b )  qD(0) = qc(0) = qu(0) = 1; ( c )  for T - ,  00 q c ( T )  must lie in the strips limited by qD(T) 

and q " ( T ) .  
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The form of map (3) depends uniquely on the Fibonacci substitution rule; the 
specific propagation problem considered enters through the explicit form of the quantity 
I. Hence we can conclude that the phenomenon discussed above involves any propaga- 
tion problem on a Fibonacci chain, provided the quantity I preserves a A dependences 
as, e.g., in the discrete Laplacian problem [ 1,2]. 

Chains generated by different substitution rules give rise to different maps [ 121: if 
such maps are conservative, and the conserved quantities keep a A dependence, we 
expect that a similar situation can occur. 

We thank R Artuso for stimulating and useful comments. 
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